
'HYHORSPHQW &KDSWHU & :KLWH

&576 �

(�?'DWD?)<3?'HYHORSPHQW?GHYHORSPHQW�UWI3DJH � RI �

Hardware

The hardware interface for the USB is quite a challenge for someone unfamiliar with fast
digital electronics. IFR opted to use an ISA development card from RS to build the interface
on. A placement student completed the initial build. - The circuit design was based very
closely on that of the real control board that we need to emulate. Philips provide a
reasonable level of documentation in support of the PDIUSBD12 but some rework was
necessary due to the rather ambitious description in some areas of the D12 data sheet

Philips also provides some example firmware that will compile and run on any MS DOS
machine. The firmware is designed to be used with the D12 evaluation kit. As a result some
modification of the C source was necessary in order to have any hope of being able to
communicate with the D12 and the USB host beyond.

The firmware provided was written in a very terse structured style with lots of magic numbers
instead of self-documenting variable names. Converting and understanding this dos
application was initially quite a challenge. The problem was compounded by a complete
lack of useful tools at the host end of the USB link all tools available to the author at the time
relied on the device being capable of enumerating correctly.

USBview, another Microsoft utility provides quick test to check whether a device has
enumerated correctly or not.

Debugging the Enumeration

Debugging the enumeration sequence can be very difficult to achieve, because of the time
constraints placed by the USB Spec on the device. - Using simple printf statements within
command servicing routines introduced delays sufficient to break the enumeration.

The other main technique is to use some form of debug utility at the host end of the bus. - This
can be achieved by installing debug builds of the key windows drivers such as USB.sys and
hid.sys. Using wdeb.exe installed as a VXD allows the debug prints generated by the drivers to
be sent via Ethernet or serial to an external terminal program (Rterm98.exe) in real time. This
configuration allows the user a good view of relevant system events.

Once the descriptors were
verified as being correct on
the DOS firmware, a reason
had to be found for
enumeration failures being
observed. In most cases
connecting the Device
caused the host to "lock up"
and eventually bug check.
This is very unfortunate
behavior, and made saving a
debug print out the
enumeration very difficult until

the remote terminal was added
to the configuration.

To provide an example of the
desired behavior, a generic USB mouse was purchased in an effort to determine why the
enumeration failed. That the mouse enumerated correctly was a good indication that the
device firmware was causing the failures, rather than software at the host end.

Figure 1 The development configuration required to aid
debugging

'HYHORSPHQW &KDSWHU & :KLWH

&576 �

(�?'DWD?)<3?'HYHORSPHQW?GHYHORSPHQW�UWI3DJH � RI �

The next approach taken was to attempt to capture the actual USB bus traffic and decode
it.

DIAGRAM2 – USB Analyser Diagram from note book

The main problem associated with this approach was the capture speed. Because of the
limited size of the capture memory it is crucial to trigger the analyser at precisely the correct
moment. This trigger was initially achieved using the programmable clock output of the D12,
though it was realised that the trigger would have to be fired at the beginning of a non - idle
packet. This required some detection logic to be added to the sampling hardware. As a
result of this new development IFR decided to hire a USB analyser.

This piece of equipment proved
invaluable throughout the period it was
available. It was found that the extra
bytes being sent from the device in
error were causing the host to bug
check. This led to the realisation that
the problem all along had been that
the compiler for the device firmware
was packing the structures used to
store the device descriptors as word
aligned, rather than byte aligning
them. This was soon rectified, and the
device enumerated correctly.

A small test application was built on top of the "Bulkusb.sys" driver from Microsoft’s examples.
This provided an efficient means of testing the prototype system.

DIAGRAM4 – SCREENSHOTS OF BULKUSB AND DOS FIRMWARE?

Now that the hardware is working and I have proved the feasibility of data transfer using the
USB I need to set about building a GPIB capable system.

Firmware

The steps to convert the known working Dos system to the VxWorks version were not huge
leaps. Instead the structured code was rewritten using an OO style (i.e. Using Objects rather
than object orientation), this allowed a swift conversion from procedures to classes and
methods when the code was ported to VxWorks This technique has been reasonably
successful, though it could be said that the resulting object is more complex than a pure OO
design would have produced.

Having created the objects in VxWorks, it was then necessary to wrap them in a USB class that
could be integrated with the rest of the instrument firmware.

DIAGRAM5 – From DOS to VxWorks?

Figure 2 CATC USB Analysers

'HYHORSPHQW &KDSWHU & :KLWH

&576 �

(�?'DWD?)<3?'HYHORSPHQW?GHYHORSPHQW�UWI3DJH � RI �

To this end, a snapshot of the Lazarus firmware was taken, and then recompiled to run on the
486 PC platform as opposed to the control boards now available to senior project
developers.

This ensured that the new USB classes would not interfere with the main project development,
and isolated the core code base from problems induced by adding a new hardware
interface.

Because of the way that the software had been designed to support the GPIB interface it
was reasonably easy to add the USB class into the system. The USB class was altered to closely
resemble the GPIB class in the way that Data streams were handled and "connected" to the
main instrument core.

As can be seen from the diagram below, the resulting system is a clean design that allows the
USB interface to be developed with no requirement for a deep understanding of the
instrument functions. This should aid reuse in future projects.

The firmware has now been compiled, and runs with few, if any, problems on the 486 PC
development platform. At a later point in the project the code developed in Bristol will be
merged with that of the Stevenage site and then a full test of the firmware can be
completed with the control board. This will ensure minimum integration problems in the final
stages of the project.

. _To-do_
DIAGRAM2 – USB Analyser Diagram [from notebook] WDM compiler chain
DIAGRAM4 – SCREENSHOTS OF BULKUSB AND DOS FIRMWARE?
DIAGRAM5 – From DOS to VxWorks

App - BulkUSB.sys
Zeus talker

Word Count: 1067

Figure 3 Integrating USB support into the Instrument Firmware

